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   Influence of microscopic inhomogeneity in binary liquid mixtures on their vibrational spectra is studied 
by doing calculations on a model liquid system. The concentration dependence of the noncoincidence 
effect (NCE), which is a feature of vibrational bands related to intermolecular resonant coupling of 
vibrational modes, is analyzed. It is suggested that observation of convex behavior of the NCEs for the 
vibrational bands of both species, especially that of the less polar species, in a binary liquid mixture is an 
indication of the occurrence of microscopic inhomogeneity. 

 
I. INTRODUCTION 
 
   Microscopic structural ordering in binary 
liquid mixtures is a fundamental problem in liquid 
state chemistry and physics, for better 
understanding of intermolecular interactions and, 
in particular, of molecular self organization on the 
microscopic scale. Sometimes this problem has 
been discussed in relation to thermodynamic 
properties. It is known that the thermodynamic 
properties of many real liquid mixtures deviate 
more or less from those of ideal mixtures,1 and 
some of those deviations are referred to as 
anomalous. Based on the Kirkwood–Buff theory,2,3 
those anomalous thermodynamic properties are 
related4 to microscopic inhomogeneity (or 
microheterogeneity5) of liquid structures, which 
means preferential solvation by the molecules of 
the same species within a length scale of a multiple 
of molecular diameters in binary liquid mixtures,6 
originating from molecular self association of 
moderate strength (not at all weak, but not so 
strong to lead to macroscopic phase separation). In 
some recent studies, the intermolecular 
interactions and the liquid structures are more 
directly analyzed by using the small- and 
large-angle x-ray and neutron scattering 
methods,7–11 the vibrational [infrared (IR) and 
Raman], dielectric, and nuclear magnetic 
resonance (NMR) spectroscopic methods,12–17 and 

the molecular dynamics (MD) simulation and other 
theoretical methods.16–19 While small-angle x-ray 
and neutron scattering measurements lead to 
estimates of the Debye correlation lengths of liquid 
structures,7–9 more molecularly detailed 
information is derived by the large-angle x-ray and 
neutron diffractions, the vibrational and NMR 
spectroscopic methods, and the computational and 
theoretical methods. However, for example in the 
case of the methanol/water binary liquid mixture, 
there is a contradiction among the results of the 
studies utilizing these methods; no signature of 
microscopic inhomogeneity has been found in the 
low-frequency Raman spectrum,20 as also 
supported by x-ray diffraction21 and thermo-
dynamic studies,1 but the occurrence of substantial 
molecular segregation has been suggested in a 
neutron diffraction study.22 In this sense, further 
methodological development is preferable to 
obtain clearer knowledge on the intermolecular 
interactions and liquid structures.  
   In the previous studies on the vibrational 
spectra in the 4000–700 cm-1 region focusing on 
the microscopic inhomogeneity of binary liquid 
mixtures,12,13 vibrational frequency shifts induced 
by the surrounding molecules have been analyzed. 
Based on the classification of the effects of 
intermolecular interactions on the vibrational 
spectra introduced in our previous study,23–26 this 
quantity is classified as diagonal, meaning that it 
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is a property of individual molecules affected by 
their local environment, such as dielectric reaction 
field and hydrogen bonding. However, there is 
another category of phenomena originating from 
an off-diagonal property of molecular vibrations, 
meaning that it is related to direct intermolecular 
coupling of vibrational modes. The noncoin-
cidence effect (NCE), which is the phenomenon 
that the frequency positions of the IR, isotropic 
Raman, and anisotropic Raman components of a 
vibrational band do not coincide,23–31 belongs to 
this category. This effect is seen in liquid systems 
as well as in biomolecules with repeat units,32,33 
and is most clearly recognized in the resonant case, 
where the intrinsic frequencies of the coupled 
modes are sufficiently close to each other as 
compared with the magnitude of the coupling. As a 
result, in binary liquid mixtures, this effect 
originates almost exclusively from the vibrational 
couplings between molecules of the same species, 
and diminishes even upon dilution with an 
isotopically substituted species, for example, upon 
dilution of acetone-12C=O with acetone-13C=O.31 
Its concentration dependence is affected by details 
of liquid structural changes, such as the anisotropy 
in the liquid structural changes in methanol/CCl4.30 
In this sense, analysis of this effect is expected to 
be useful also to detect microscopic 
inhomogeneity of liquid structures as a property 
related to the distances and relative orientations of 
the molecules of the same species.  
   In the present work, this point is studied by 
doing calculations on a model liquid system. The 
effect of preferential solvation on vibrational band 
profiles is examined by isolating it from those of 
other factors of liquid structures. It is shown that a 
nonlinear convex behavior of the concentration 
dependence of the NCEs of the vibrational bands 
of both species (not only one of those species) in a 
binary liquid mixture is an indication of the 
occurrence of microscopic inhomogeneity. 
Distinction with the nonlinear concentration 
dependence of the NCEs arising from polarity 
difference is discussed.  
 
 

II. MODEL AND COMPUTATIONAL 
PROCEDURE 
 
   The model liquid system adopted in the present 
work consists of polar spherical particles 
interacting with each other by the Lennard-Jones 
and dipole–dipole interactions (Stockmayer 
fluid),34 with a one-dimensional oscillator (repre-
senting a vibrational degree of freedom) having a 
vibrational transition dipole and a Raman tensor 
being buried in each particle.35 Denoting the 
coordinate (weighted by the square root of the 
reduced mass) of the mth particle’s oscillator as qm, 
its vibrational transition dipole and Raman tensor 
are expressed within the harmonic approximation 
as (∂μm/∂qm) <1m| qm |0m> and (∂αm/∂qm) <1m| qm 
|0m>, respectively, where |0m> and |1m> are the 
ground and one-quantum excited states of this 
oscillator. While the Lennard-Jones and 
dipole–dipole interaction parameters were 
assumed to be the same for all the particles (ε = 
150 K, σ = 4.2 Å, and μ* ≡ μ(εσ3)1/2 = 2.5),35 two 
sets of parameters (force constants, etc.) were 
assumed for the vibrational modes to model the 
two species in binary liquid mixture, and were 
assigned according to specified mole fractions. 
Specific values of the parameters assumed in the 
present calculation are summarized in Table I.  
   Ensembles of liquid structures of a 512-particle 
system, with respect to the locations and 
orientations of the particles, were generated by the 
Monte Carlo method.36 Two thermodynamic states, 
(T*, ρ*) = (2.0, 0.9) and (4.0, 0.45) (called state A 
and B hereafter),35 where T* (≡ T/ε) and ρ* (≡ρσ3) 
are the reduced temperature and density, were 
considered as examples. To simulate preferential 
solvation in this binary liquid mixture, virtual 
energy of self association (VESA), which is a 
separate energy scale and operates between the 
molecules of the same species within the first 
solvation layer, was introduced in the assignment 
of the parameters of vibrational modes, and 
ensembles of the assignments were generated by 
the Monte Carlo method on the basis of the sum of 
this virtual energy. In other words, simulations of 
the liquid structures were carried out in two steps: 
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TABLE I. Values of the parameters of vibrational modes assumed in the present calculation. 
============================================================= 
 Species 1 Species 2 
—————————————————————————————————— 
force constant (mdyn Å-1 amu-1)a

 averageb 1.7 1.1 
 standard deviationc 0.017 0.011 
|∂μm/∂qm| (D Å-1 amu-1/2)d 1.5 1.21 
(∂αm/∂qm)zz (arbitrary unit)e 1.0 1.0 
============================================================= 
 a Weighted by the inverse of the mass.  
 b Corresponding to the uncoupled vibrational frequencies of 1698.6 and 1366.4 cm-1.  
 c Gaussian distribution is assumed. 
 d The direction of ∂μm/∂qm is parallel to the permanent dipole of each particle.  
 e The form of ∂αm/∂qm is assumed to be axially symmetric, only its zz component being nonzero,  

where z axis is taken to be parallel to the permanent and transition dipoles. 

locations and orientations of the particles were 
determined by the real interaction energy 
(determined by ε, σ, and μ), and for each set 
(configuration) of those locations and orientations 
of the particles, ensembles of the assignments of 
the molecular species were generated with a 
separate energy scale. Since the locations and 
orientations of the particles were fixed in the latter 
step, it is possible to examine the effect of 
preferential solvation on vibrational band profiles 
separately from those of the translational and 
rotational degrees of freedom of the liquid 
structures. In the present calculation, a few values 
of VESA were assumed as described below in 
section III. In total, 2500 sets of liquid structures 
were sampled for the calculation of the vibrational 
spectrum for each value of VESA and at each mole 
fraction. 
   The vibrational modes of different particles are 
coupled by the transition dipole coupling (TDC) 
mechanism,23–26,28–31,33 expressed as  
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where Tmn is the dipole interaction tensor between 
the mth and nth particles, which is given as 
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where rmn = rm – rn is the distance vector (of length 
rmn) between the particles, and I is a 3 × 3 unit 

tensor. TDC is known as the typical coupling 
mechanism for the vibrational modes exhibiting a 
large magnitude of NCE, e.g., the C=O stretching 
modes of many carbonyl compounds (such as 
acetone and N,N-dimethylformamide), the O–H 
and C–O stretching modes of methanol, the O–H 
stretching mode of water, and the S=O stretching 
mode of dimethyl sulfoxide. The normal modes of 
the liquid system were calculated by diagonalizing 
the vibrational Hamiltonian constructed from the 
force constants of individual oscillators (diagonal 
terms) and the vibrational couplings according to 
the TDC mechanism (off-diagonal terms). The IR 
and Raman spectra were calculated from those 
normal modes combined with the vibrational 
transition dipoles and the Raman tensors.23  
   The calculations described above were carried 
out with our original programs on Hewlett–
Packard zx6000 and other servers. Part of the 
calculations was carried out on Altix 4700 
computers at the Research Center for Computa-
tional Science of the National Institutes of Natural 
Sciences at Okazaki. 
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III. RESULTS AND DISCUSSION 
 
   As an example of the calculated radial 
distribution functions, those calculated for state A 
with VESA11 = –0.4 kT (operating between 
molecules of species 1) at the mole fraction x1 = 
0.5 are shown in the upper part of Fig. 1. It is seen 
that preferential solvation occurs between the 
molecules of the same species as a result of the 
VESA, so that the local mole fractions  and 

, where  is defined as the mole fraction of 
species m in the surroundings (the first solvation 
layer) of a molecule of species n,

L
11x

L
22x L

mnx

1 are larger than 
the (global) mole fractions x1 and x2 (= 0.5). In this 
case, microscopic inhomogeneity extends to the 
second solvation layer. The small steps of the 
radial distribution functions at r = 6.22 Å are the 
artifacts due to the modeling of preferential 
solvation described above, but will be smoothed 
by defining the VESA as decreasing gradually as r 
increases rather than vanishing suddenly at the 
boundary of the first solvation layer (r = 6.22 Å) 
as in the present calculation. The IR and Raman 
spectra calculated for this case are shown in the 
lower part of Fig. 1. In both the frequency regions 
of the vibrations of species 1 (~1700 cm-1) and 
species 2 (~1360 cm-1), the isotropic Raman band 
is lower in frequency than the IR and anisotropic 
Raman bands (the NCE). At the same time, the 
isotropic Raman band profiles are noticeably 
asymmetric. Both the NCE and the asymmetry of 
the band profiles originate from the vibrational 
couplings. Although the band asymmetry is also 
informative of intermolecular interactions,37 only 
the behavior of the NCE is discussed in the present 
work. In the presence of band asymmetry, the peak 
positions and the first moments are different. In 
such a case, it is legitimate to evaluate the value of 
NCE (defined as  ≡  
and  ≡ ) on the basis of the 
first moments.

iso)-NCE(aniso
~ν isoaniso

~~ νν −

iso)-NCE(IR
~ν isoIR

~~ νν −
38  

FIG. 1. Radial distribution functions (upper part) and 
the IR and Raman spectra (lower part) calculated for 
state A with VESA11 = –0.4 kT (operating between 
molecules of species 1) at the mole fraction x1 = 0.5, 
taken as an example. In the upper part, g11(r), g22(r), and 
g12(r) (where gmn(r) is the function for the distances 
between the molecules of species m and species n) are 
shown in pink, purple, and light blue, respectively. The 
function in the case of no preferential solvation is 
shown with a black broken line as a reference. In the 
Raman spectra (bottom), the isotropic and anisotropic 
components are shown in blue and green, respectively. 

   The concentration dependencies of the relative 
magnitudes of NCE and the local mole fractions 

 and  calculated for a few values of 
VESA are shown in Fig. 2. The former quantity is 
defined, for the vibrational band of each species, 

as the value of NCE ( or 
) at a specified mole fraction divided 

by that of the neat liquid. In the case of no 
preferential solvation, the relative magnitudes of 
NCE depend linearly on the mole fraction. 
However, as the preferential solvation is 
introduced by VESA, the concentration depen-
dencies of the relative magnitudes of NCE of both 
species become convex, in the same way as those 
of the local mole fractions. As expected, the 
deviation is largest at intermediate concentrations. 
In the case of state A, the calculated behavior of 

 is indistinguishable from that of 
 (overlapped in Fig. 2), and is 

almost symmetric between the vibrational bands of 
species 1 and 2. In the case of state B, however, 
the behavior of  and  

L
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of the vibrational bands of species 1 and 2 is 
noticeably asymmetric, with the deviation from the 
linear behavior being larger for the vibrational 
band of species 1. This is probably because of the 
rather low density (ρ*) of this state. Note that the 
VESA is introduced only between the molecules of 
species 1 in the present calculation. In spite of this 
asymmetry, when the magnitude of VESA is 
sufficiently large, the convex dependence of the 
NCE is recognized for the vibrational band of 
species 2 as well as that of species 1. 
   As predicted in a previous theoretical study 
based on the mean spherical approximation of 
liquid structures28 and confirmed experimentally,31 
nonlinear dependencies of the relative magnitudes 
of NCE on the mole fraction are also seen when 
the molecules of the two species in a binary liquid 
mixture have different polarities (i.e., different 
magnitudes of dipole moments), because of the 

molecular orientational effect on the magnitude of 
NCE. However, these nonlinear dependencies are 
distinguished from those arising from microscopic 
inhomogeneity, as shown schematically in Fig. 3. 
In the case of polarity difference, the behavior of 
the NCE of the more polar species exhibits a 
convex curvature, while that of the less polar 
species exhibits a concave curvature.28 This means 
that, when the NCEs of the vibrational bands of 
both species are observed, one of them shows a 
convex curvature and the other shows a concave 
curvature, as shown on the right-hand side of Fig. 
3, which is drawn by assuming that the magnitude 
square of the dipole moment of species 1 is (as an 
example) twice as large as that of species 2 in Eq. 
(17) of Ref. 28. This is distinguished from the 
situation arising from microscopic inhomogeneity 
shown on the left-hand side of Fig. 3, where the 
NCEs of the vibrational bands of both species 
show convex curvatures.  
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FIG. 3. Schematic drawings of the nonlinear 
concentration dependencies of the relative magnitudes 
of NCE arising from microscopic inhomogeneity (left) 
and polarity difference (right). The former is taken from 
Fig. 2 (a). The latter is drawn on the basis of Logan’s 
theory [Eq. (17) of Ref. 28], assuming that the 
magnitude square of the dipole moment of species 1 is 
(as an example) twice as large as that of species 2. 

   In real binary liquid mixtures, the molecular 
dipole moments of the two species are generally 
different, so that the factors shown in both parts of 
Fig. 3 should be simultaneously taken into account. 
It should be noted that only the molecular 
orientational effect arising from polarity difference 
(and no effect of microscopic inhomogeneity) is 
involved in the behavior on the right-hand side of 
Fig. 3, as clearly recognized from the derivation of 
Eq. (17) in Ref. 28, while only the effect of 
microscopic inhomogeneity (and no effect of 
polarity difference) is involved in the behavior on 

FIG. 2. Concentration dependencies of the relative 
magnitudes of NCE of the vibrational bands of species 
1 and 2 (color lines) and the local mole fractions  L

11x
and  (black broken lines) calculated for state A L

22x
(left, a–d) and state B (right, e–h) with the values of 
VESA specified in each part. For state B, the curves for 

iso)-NCE(IR
~ν  (red) do not overlap with those of 

iso)-NCE(aniso
~ν  (light blue), so that they are drawn 

separately. The black dotted lines indicate linear 
dependencies and are drawn as a reference. 
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the left-hand side of Fig. 3. In this sense, it is 
important to analyze the behavior of the NCEs of 
the vibrational bands of both species in the liquid 
mixture, especially that of the less polar species, to 
discuss the extent of microscopic inhomogeneity. 
Observation of convex behavior of the NCEs for 
the vibrational bands of both species will be a 
clear indication of the occurrence of microscopic 
inhomogeneity.  
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